Specific capacitance–pore texture relationship of biogas slurry mesoporous carbon/MnO₂ composite electrodes for supercapacitors

Talam E. Kibona a,*, Godlisten N. Shao b, Hee Taik Kim c, Cecil K. King'ondu d,e,***

a Department of Physics, Mkwawa University College of Education, University of Dar es Salaam, P.O. Box 2513, Iringa, Tanzania
b Department of Chemistry, Mkwawa University College of Education, University of Dar es Salaam, P.O. Box 2513, Iringa, Tanzania
c Department of Chemical Engineering, Hanyang University, 1271 Sa 3-dong, Sangnok-gu, Ansan-si, Gyeonggi-do 426-791, Republic of Korea
d Department of Chemical and Forensic Sciences, Botswana International University of Science and Technology, Private Bag 16, Palapye, Botswana
e Department of Chemistry, South Eastern Kenya University, P.O. BOX 170-90200, Kitui, Kenya

highl**i**g**h**ts

- Precise MnO₂ loading afforded high specific capacitance (709 F g⁻¹) materials.
- Texture properties modulation strongly influences electrochemical performance.
- Capacitance-texture properties correlation is predominant at high scan rates.
- Pseudocapacitance was more pronounced in the negative potential.

graphical **a**b**r**act

article info

Article history:
Received 30 June 2018
Received in revised form 28 September 2018
Accepted 17 October 2018

Keywords: Biogas slurry Mesoporous carbon Manganese oxide Supercapacitors Specific capacitance and composites

ab**r**act

Here, we report synthesis of biogas slurry mesoporous carbon/MnO₂ composites by simple co-precipitation route followed by thermal treatment at 250 °C for 6 h. The texture, morphology, crystal structure, and microstructure of the composites are investigated by nitrogen sorption studies, FESEM, HRTEM, X-ray diffraction, and Raman spectroscopy. All samples exhibit type IV isotherms. The BET surface area decreased from 514 to 110 m² g⁻¹ while total pore volume decreased from 0.52 to 0.17 cm³ g⁻¹ for samples loaded with 2 × 10⁻³ and 2 × 10⁻² moles of Mn. The electrodes fabricated exhibit high specific capacitance of 709 F g⁻¹ at scan rate of 5 mV s⁻¹. The specific capacitance at scan rate of 5 mV s⁻¹ increases with increasing MnO₂ content. However, at 50 mV s⁻¹, specific capacitance decreases with increasing MnO₂ content. Varying the MnO₂ content and hence the textural parameters, strongly influences the specific capacitances of the composite electrodes.